Methamphetamine increases dopamine transporter higher molecular weight complex formation via a dopamine- and hyperthermia-associated mechanism.
نویسندگان
چکیده
Multiple high-dose administrations of methamphetamine (METH) both rapidly (within hours) decrease plasmalemmal dopamine (DA) uptake and cause long-term deficits in DA transporter (DAT) levels and other dopaminergic parameters persisting weeks to months in rat striatum. In contrast, either a single administration of METH or multiple administrations of methylenedioxymethamphetamine (MDMA) cause less of an acute reduction in DA uptake and little or no persistent dopaminergic deficits. The long-term dopaminergic deficits caused by METH have been suggested, in part, to involve the DAT. Hence, this study assessed the impact of METH and MDMA administration on the DAT protein per se. Results revealed that multiple administrations of METH promoted formation of higher molecular weight (>170 kDa) DAT-associated protein complexes 24-48 hr after treatment. This increase was attenuated by either preventing hyperthermia or pretreatment with the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine; notably, each of these manipulations has also been demonstrated previously to prevent the persistent deficits in dopaminergic function caused by METH treatment. In contrast, either a single injection of METH or multiple injections of MDMA caused little or no formation of these DAT complexes. The addition of the reducing agent beta-mercaptoethanol to samples prepared from METH-treated rats diminished the intensity of these complexes. Taken together, these data are the first to demonstrate higher molecular weight DAT complex formation in vivo and that such formation can be altered by both pharmacological and physiological manipulations. The implications of this phenomenon with regard to the neurotoxic potential of these stimulants are discussed.
منابع مشابه
Methamphetamine-induced dopamine transporter complex formation and dopaminergic deficits: the role of D2 receptor activation.
Methamphetamine (METH) abuse is a serious public health issue. Of particular concern are findings that repeated high-dose administrations of METH cause persistent dopaminergic deficits in rodents, nonhuman primates, and humans. Previous studies have also revealed that METH treatment causes alterations in the dopamine transporter (DAT), including the formation of higher molecular mass DAT-associ...
متن کاملAlterations in vesicular dopamine uptake contribute to tolerance to the neurotoxic effects of methamphetamine.
Previous studies demonstrated that tolerance to the long-term neurotoxic effects of methamphetamine on dopamine neurons could be induced by pretreating with multiple injections of escalating doses of methamphetamine. The mechanism(s) underlying this tolerance phenomenon is unknown. Some recent studies suggested that aberrant vesicular monoamine transporter-2 (VMAT-2) and dopamine transporter fu...
متن کاملMarkers Associated with Sex Differences in Methamphetamine-Induced Striatal Dopamine Neurotoxicity
Three different approaches were employed to assess various markers associated with sex differences in responses to methamphetamine (MA). Bioassay measures reveal that MA treatment results in significantly greater reductions in body weight and increases in body temperature in male mice. Protein and mRNA determinations show significant increases in Bcl-2 and PAI-1 in male mice, while females show...
متن کاملMethamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia.
Single and multiple high-dose administrations of methamphetamine (METH) differentially decrease dopamine (DA) transporter (DAT) function, as assessed by measuring [(3)H]DA uptake into rat striatal synaptosomes prepared 1 h after treatment. Prevention of METH-induced hyperthermia attenuated the decrease in DAT activity induced by multiple injections of the stimulant. Likewise, this decrease was ...
متن کاملLobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum.
L-Lobeline is an alkaloid that inhibits the behavioral effects of methamphetamine (METH) in rats. No studies have examined the effects of lobeline on the acute and long-term neurochemical changes produced by neurotoxic doses of METH. The effects of lobeline on METH-induced dopamine release, alterations in vesicular monoamine transporter 2 (VMAT-2) distribution, and long-term depletions of dopam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 13 شماره
صفحات -
تاریخ انتشار 2004